> [!tldr]
> A discrete purely random process is a sequence of iid. distributed variables $(Z_{t})$. They are usually assumed to be normally distributed with mean $\mu=0$ and variance $\sigma^{2}_{Z}$.
### Properties of PRP's
If assumed to follow $N(0,\sigma^{2}_{Z})$, a PRP is a (strictly) stationary normal process.
Per definition, the purely random process $(Z_{t})$ has a constant [[Autocorrelations|acv.f.]] of $\gamma(\tau):=\mathrm{Cov}(Z_{t},Z_{t+\tau})=\begin{cases}
\sigma^{2}_{Z} & \text{if }k=0 \\
0 & \text{otherwise}
\end{cases}$and its [[Autocorrelations#Correlograms|correlogram]] has no strong correlations for any lag $\tau>0$:
```R fold
data <- rnorm(500, mean=0, sd=1)
par(mfrow=c(2,1), mar=c(3,4,3,4), bg=NA)
plot(data, type="l",
ylab="Series Value",
main="Purely Random Normal Process")
acf(data, xlab="Time",
ylab="Autocorr.", main="")
```
![[PRPNormalACF.png#invert]]