> [!tldr] Variance Inflation Factor
> In the OLS model $\mathbf{y} \sim \mathbf{X}$ where $\mathbf{X}$ is the design matrix (including the intercept), the **variance inflation factor (VIF)** of the $j$th covariate $\mathbf{x}_{j}$ is $\mathrm{VIF}_{j}:= \frac{1}{1-R_{j}^{2}},$where $R_{j}^{2}$ is the [[Pearson's R2|Pearson's $R^{2}$]] score of regressing $\mathbf{x}_{j} \sim \mathbf{X}_{-j}$ (the design matrix without the $j$th covariate).
Therefore, if the $\mathrm{VIF}$ is large if and only if $\mathbf{x}_{j}$ does not carry much of information new to $\mathbf{X}_{-j}$.
### Motivation of the Name VIF
The $\mathrm{VIF}$ appears in the following identity under the assumption that $Y=f(X)+\epsilon$ for some general $f$ (not necessarily linear) and independent error $\epsilon \sim [0, \sigma^{2}]$:
> [!theorem|*] Variance Inflation
> If $\tilde{\beta}_{j}$ is the coefficient of $\mathbf{x}_{j}$ in the OLS $\mathbf{y} \sim 1+\mathbf{x}_j$, and $\hat{\beta}_{j}$ that of the full OLS $\mathbf{y} \sim \mathbf{X}$, $\mathrm{Var}(\hat{\beta}_{j})=\mathrm{VIF}_{j}\cdot \mathrm{Var}(\tilde{\beta}_{j}).$In particular, $\mathrm{Var}(\hat{\beta}_{j})=\underbrace{\frac{1}{1-R_{j}^{2}}}_{\mathrm{VIF}}\cdot \underbrace{\frac{\sigma^{2}}{\| \mathbf{x}_{j}-\bar{x}_{j} \| ^{2}}}_{\mathrm{Var}(\tilde{\beta}_{j})}.$
> That is, *introducing the covariates $\mathbf{X}_{-j}$ inflates the variance of $\mathbf{x}_{j}